Unit Circle

Unit circle – Wikipedia
A unit circle showing the relationship of the trigonometric functions – math.wikia.org

In trigonometry, the unit circle has a radius of 1 and is centered at the origin. It’s useful for learning ratios like sine and cosine. It also illustrates the relationship between angles in degrees and radians.

DegreesRadiansRadians (π)Cos (X Coord)Sin (Y Coord)TanCotCos2+Sin2QuadrantCAST
000100#*
100.17453292519943295 0.9848077530122080.173648177666930330.176326980708464981.54235104535692021IA
200.3490658503988659 0.93969262078590840.34202014332566870.363970234266202340.44699510894891671IA
300.5235987755982988π/60.86602540378443870.499999999999999940.5773502691896257-0.156119952161659221IA
400.6981317007977318 0.7660444431189780.64278760968653930.8390996311772799-0.89508291763791281IA
450.7853981633974483π/40.70710678118654760.707106781186547510.61736962378355511IA
500.8726646259971648 0.64278760968653940.7660444431189781.19175359259421-3.6778144508505691IA
601.0471975511965976π/30.50000000000000010.86602540378443861.73205080756887673.1246056222423081IA
701.2217304763960306 0.34202014332566880.93969262078590832.74747741945462160.81835744786510371IA
801.3962634015954636 0.173648177666930410.9848077530122085.6712818196177070.111066006642991591IA
901.5707963267948966π/201-0.5012027833801532*
1001.7453292519943295 -0.17364817766693030.984807753012208-5.671281819617711-1.7029569194264691IIS
1101.9198621771937625 -0.34202014332566870.9396926207859084-2.747477419454622522.5804778678565761IIS
1202.09439510239319532π/3-0.49999999999999980.8660254037844387-1.73205080756887831.40228261643137261IIS
1302.2689280275926285 -0.64278760968653940.766044443118978-1.191753592594210.39489192643154881IIS
1352.3561944901923453π/4-0.70710678118654750.7071067811865476-1.0000000000000002-11.271954795943051IIS
1402.443460952792061 -0.76604444311897790.6427876096865395-0.8390996311772804-0.201801235135919741IIS
1502.61799387799149445π/6-0.86602540378443870.49999999999999994-0.5773502691896257-0.97814220401853911IIS
1602.792526803190927 -0.93969262078590830.3420201433256689-0.36397023426620256-4.4462944694820431IIS
1702.9670597283903604 -0.9848077530122080.17364817766693028-0.17632698070846492.70588843353160021IIS
1803.141592653589793π-1000.7469988144140444*
1903.3161255787892263 -0.984807753012208-0.173648177666930470.17632698070846510.066453103112471161IIIT
2003.490658503988659 -0.9396926207859084-0.342020143325668660.3639702342662023-0.55787150213477011IIIT
2103.66519142918809237π/6-0.8660254037844386-0.50000000000000010.577350269189626-1.88976369016596931IIIT
2203.839724354387525 -0.766044443118978-0.64278760968653930.839099631177279911.2680959127342251IIIT
2253.92699081698724145π/4-0.7071067811865477-0.70710678118654750.9999999999999997-0.394926771899133061IIIT
2304.014257279586958 -0.6427876096865395-0.76604444311897791.19175359259420931.27859391352792581IIIT
2404.18879020478639054π/3-0.5000000000000004-0.86602540378443841.73205080756887540.344579803322731751IIIT
2504.363323129985824 -0.34202014332566855-0.93969262078590842.7474774194546243-0.248306386248416921IIIT
2604.537856055185257 -0.17364817766693033-0.9848077530122085.67128181961771-1.06872325051888731IIIT
2704.712388980384693π/20-1-5.591619519586494*
2804.886921905584122 0.17364817766692997-0.9848077530122081-5.6712818196177232.3767849112804321IVC
2905.061454830783556 0.342020143325669-0.9396926207859083-2.747477419454620.68021031217024591IVC
3005.2359877559829895π/30.5000000000000001-0.8660254037844386-1.7320508075688770.022102015709024261IVC
3105.410520681182422 0.6427876096865393-0.7660444431189781-1.1917535925942102-0.61741125828892911IVC
3155.4977871437821387π/40.7071067811865474-0.7071067811865477-1.00000000000000040.89502862389450641IVC
3205.585053606381854 0.7660444431189778-0.6427876096865396-0.8390996311772806-2.11069404401516231IVC
3305.75958653158128711π/60.8660254037844384-0.5000000000000004-0.57735026918962657.4874348329472421IVC
3405.934119456780721 0.9396926207859084-0.3420201433256686-0.36397023426620221.1681620233080221IVC
3506.1086523819801535 0.984807753012208-0.1736481776669304-0.1763269807084650.29578013368157871IVC
3606.283185307179586100-0.295845697968555*
Unit circle

Table Legend

* These parts of the unit circle are not triangles; they are lines/vectors. Therefore, their length, by default being part of a unit circle, is one.

# Division by zero is undefined (See Why Dividing by Zero is Undefined?)

Quadrant IV – (C)osine ratio is positive

Quadrant I – (A)ll ratios are positive

Quadrant II – (S)ine ratio is positive

Quadrant III – (T)angent ratio is positive

Suggested Reading

Abramson, Jay. 2015. “Unit Circle”. openstax . https://opentextbc.ca/algebratrigonometryopenstax/chapter/unit-circle/.

“Exsecant – Wikipedia”. 2021. en.wikipedia.org. https://en.wikipedia.org/wiki/Exsecant.

“The CAST Method”. 2021. mathonweb.com. https://mathonweb.com/help_ebook/html/cast.htm.

“Trig Cheat Sheet”. 2021. tutorial.math.lamar.edu. https://tutorial.math.lamar.edu/pdf/Trig_Cheat_Sheet.pdf.

“Trig. Equations Examples Using CAST Diagrams (Solutions, Examples, Worksheets, Videos, Activities)”. 2021. onlinemathlearning.com. https://www.onlinemathlearning.com/trig-equations-cast.html.

“Unit Circle”. 2021. mathsisfun.com. https://www.mathsisfun.com/geometry/unit-circle.html.

“Unit Circle: Sine And Cosine Functions | Precalculus II”. 2021. courses.lumenlearning.com. https://courses.lumenlearning.com/precalctwo/chapter/unit-circle-sine-and-cosine-functions/.

“UNIT CIRCLE TRIGONOMETRY”. 2021. online.math.uh.edu. https://online.math.uh.edu/MiddleSchool/Modules/Module_4_Geometry_Spatial/Content/UnitCircleTrigonometry-TEXT.pdf.

“Versine – Wikipedia”. 2021. en.wikipedia.org. https://en.wikipedia.org/wiki/Versine.

Videos

Unit circle trigonometry comes up a lot in geometry, precalculus, and even calculus problems.

Introduction to the unit circle | Trigonometry | Khan Academy

Extending SOH CAH TOA so that we can define trig functions for a broader class of angles.

09 – Unit Circle – Definition & Meaning – Sin(x), Cos(x), Tan(x), – Sine, Cosine & Tangent

In this lesson, we will learn what a unit circle is and why it is crucial to master in trigonometry, pre-calculus, and calculus. The unit circle is a circle of radius 1 (a unit radius) that is superimposed on to an xy plane. The points on the circle itself represent the sine and cosine values of the angles around the unit circle. In this lesson, we will spend our time finding the sine and cosine of the angles in quadrant one, and we will fill out a table of trigonometric functions at each of these angles. This is critical to master as understanding the first quadrant will help us find trig functions at any other angle around the unit circle.

Website Powered by WordPress.com.

Up ↑